alexa A proposed quantitative index for assessing the potential contribution of reprogramming to cancer stem cell kinetics.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Gao X, McDonald JT, Naidu M, Hahnfeldt P, Hlatky L

Abstract Share this page

Abstract Enrichment of cancer stem cells (CSCs) is thought to be responsible for glioblastoma multiforme (GBM) recurrence after radiation therapy. Simulation results from our agent-based cellular automata model reveal that the enrichment of CSCs may result either from an increased symmetric self-renewal division rate of CSCs or a reprogramming of non-stem cancer cells (CCs) to a stem cell state. Based on plateau-to-peak ratio of the CSC fraction in the tumor following radiation, a downward trend from peak to subsequent plateau (i.e., a plateau-to-peak ratio exceeding 1.0) was found to be inconsistent with increased symmetric division alone and favors instead a strong reprogramming component. The two contributions together are seen to be the product of a dynamic equilibrium between CSCs and CCs that is highly regulated by the kinetics of single cells, including the potential for CCs to reacquire a stem cell state and confer phenotypic plasticity to the population as a whole. We conclude that tumor malignancy can be gauged by a degree of cancer cell plasticity.
This article was published in Stem Cells Int and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords