alexa A pyramid of loci for partial resistance to Fusarium solani f. sp. glycines maintains Myo-inositol-1-phosphate synthase expression in soybean roots
Biochemistry

Biochemistry

Journal of Plant Biochemistry & Physiology

Author(s): M Iqbal, A Afzal, S Yaegashi, E Ruben

Abstract Share this page

Myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) converts glucose 6-phosphate to myo-inositol 1-phosphate in the presence of NAD+. It catalyzes the first step in the synthesis of myo-inositol and pinitol, and is a rate limiting step in the de novo biosynthesis of inositol in eukaryotes. Therefore, MIPS is involved in biotic and abiotic stress via Ca2+ signalling. Seedlings of four soybean genotypes were inoculated with Fusarium solani f. sp. glycines, the causative agent of sudden death syndrome (SDS), and differentially abundant mRNAs were identified by differential display. The genotypes carried either zero, two, four or six alleles of the quantitative trait loci (QTLs) that control resistance to SDS in an additive manner. The mRNA abundance of MIPS did not decrease following inoculation in a recombinant inbred line (RIL 23) containing all six resistance alleles of the QTLs conferring resistance to SDS of soybean. However, the abundance of MIPS mRNA was decreased in genotypes containing four, two or no resistance alleles. The specific activity of the MIPS enzyme in vitro followed the same pattern across genotypes. The IP3 content in the inoculated roots of genotypes with two, four or six resistance alleles were higher compared to the non-inoculated root. The results suggests that a non-additive effect on transcription and translation of MIPS is established in RIL 23 roots by pyramiding six QTLs for resistance to SDS. A role of MIPS in the partial resistance or response of soybean roots to F. solani infection is suggested.

This article was published in Theoretical and Applied Genetics and referenced in Journal of Plant Biochemistry & Physiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords