alexa A random forest approach to the detection of epistatic interactions in case-control studies.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Jiang R, Tang W, Wu X, Fu W

Abstract Share this page

Abstract BACKGROUND: The key roles of epistatic interactions between multiple genetic variants in the pathogenesis of complex diseases notwithstanding, the detection of such interactions remains a great challenge in genome-wide association studies. Although some existing multi-locus approaches have shown their successes in small-scale case-control data, the "combination explosion" course prohibits their applications to genome-wide analysis. It is therefore indispensable to develop new methods that are able to reduce the search space for epistatic interactions from an astronomic number of all possible combinations of genetic variants to a manageable set of candidates. RESULTS: We studied case-control data from the viewpoint of binary classification. More precisely, we treated single nucleotide polymorphism (SNP) markers as categorical features and adopted the random forest to discriminate cases against controls. On the basis of the gini importance given by the random forest, we designed a sliding window sequential forward feature selection (SWSFS) algorithm to select a small set of candidate SNPs that could minimize the classification error and then statistically tested up to three-way interactions of the candidates. We compared this approach with three existing methods on three simulated disease models and showed that our approach is comparable to, sometimes more powerful than, the other methods. We applied our approach to a genome-wide case-control dataset for Age-related Macular Degeneration (AMD) and successfully identified two SNPs that were reported to be associated with this disease. CONCLUSION: Besides existing pure statistical approaches, we demonstrated the feasibility of incorporating machine learning methods into genome-wide case-control studies. The gini importance offers yet another measure for the associations between SNPs and complex diseases, thereby complementing existing statistical measures to facilitate the identification of epistatic interactions and the understanding of epistasis in the pathogenesis of complex diseases.
This article was published in BMC Bioinformatics and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords