alexa A Refined Model of the HCV NS5A protein bound to daclatasvir explains drug-resistant mutations and activity against divergent genotypes.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmaceutical Care & Health Systems

Author(s): Barakat KH, AnwarMohamed A, Tuszynski JA, Robins MJ, Tyrrell DL,

Abstract Share this page

Abstract Many direct-acting antiviral agents (DAAs) that selectively block hepatitis C virus (HCV) replication are currently under development. Among these agents is Daclatasvir, a first-in-class inhibitor targeting the NS5A viral protein. Although Daclatasvir is the most potent HCV antiviral molecule yet developed, its binding location and mode of binding remain unknown. The drug exhibits a low barrier to resistance mutations, particularly in genotype 1 viruses, but its efficacy against other genotypes is unclear. Using state-of-the-art modeling techniques combined with the massive computational power of Blue Gene/Q, we identified the atomic interactions of Daclatasvir within NS5A for different HCV genotypes and for several reported resistant mutations. The proposed model is the first to reveal the detailed binding mode of Daclatasvir. It also provides a tool to facilitate design of second generation drugs, which may confer less resistance and/or broader activity against HCV. This article was published in J Chem Inf Model and referenced in Journal of Pharmaceutical Care & Health Systems

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version