alexa A SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Vangheluwe P, Tjwa M, Van Den Bergh A, Louch WE, Beullens M,

Abstract Share this page

Abstract Abnormal Ca(2+) cycling in the failing heart might be corrected by enhancing the activity of the cardiac Ca(2+) pump, the sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) isoform. This can be obtained by increasing the pump's affinity for Ca(2+) by suppressing phospholamban (PLB) activity, the in vivo inhibitor of SERCA2a. In SKO mice, gene-targeted replacement of SERCA2a by SERCA2b, a pump with a higher Ca(2+) affinity, results in cardiac hypertrophy and dysfunction. The stronger PLB inhibition on cardiac morphology and performance observed in SKO was investigated here in DKO mice, which were obtained by crossing SKO with PLB(-/-) mice. The affinity for Ca(2+) of SERCA2 was found to be further increased in these DKO mice. Relative to wild-type and SKO mice, DKO mice were much less spontaneously active and showed a reduced life span. The DKO mice also displayed a severe cardiac phenotype characterized by a more pronounced concentric hypertrophy, diastolic dysfunction and increased ventricular stiffness. Strikingly, beta-adrenergic or forced exercise stress induced acute heart failure and death in DKO mice. Therefore, the increased PLB inhibition represents a compensation for the imposed high Ca(2+)-affinity of SERCA2b in the SKO heart. Limiting SERCA2's affinity for Ca(2+) is physiologically important for normal cardiac function. An improved Ca(2+) transport in the sarcoplasmic reticulum may correct Ca(2+) mishandling in heart failure, but a SERCA pump with a much higher Ca(2+) affinity may be detrimental. This article was published in J Mol Cell Cardiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords