alexa A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis.
Clinical Research

Clinical Research

Journal of Clinical Trials

Author(s): Weiner HL

Abstract Share this page

Abstract Multiple sclerosis is postulated to be a T cell-mediated autoimmune disease characterised by a relapsing-remitting stage followed by a secondary progressive phase. The relapsing remitting phase may involve waves of proinflammatory Th1 and Th17 cells that infiltrate the nervous system, provoking a clinical attack. The activity of these cells is modulated by other populations of regulatory T cells and the balance between the pro-inflammatory and regulatory T cells is critical for determining disease activity. Promoting the activity of regulatory cells is a potentially beneficial therapeutic strategy, and probably contributes to the action of glatiramer acetate. The progressive phase of multiple sclerosis is believed to be secondary to neurodegenerative changes triggered by inflammation. The status of the innate immune system and its relationship to the stages of multiple sclerosis has been poorly defined until recently. However, recent data suggest that these results demonstrate abnormalities of dendritic cell activation or maturation may underlie the transition to the progressive phase of the disease. Preventing this transition, perhaps by acting at the level of the innate immune system, is an important treatment goal. The identification of biomarkers to predict disease course and treatment response is a major challenge in multiple sclerosis research. Studies using antigen arrays have identified antibody patterns related to CNS antigens and heat-shock proteins that are associated with different disease stages and with response to therapy. In the future, such antibody repertoires could be used as biomarkers for the diagnosis and evaluation of patients with multiple sclerosis, for matching treatments to individual patients and, potentially, to identify healthy individuals at risk for this autoimmune disease. This article was published in J Neurol and referenced in Journal of Clinical Trials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version