alexa A simple method to achieve high doxorubicin loading in biodegradable polymersomes.
Biomedical Sciences

Biomedical Sciences

Journal of Biomedical Engineering and Medical Devices

Author(s): Sanson C, Schatz C, Le Meins JF, Soum A, Thvenot J,

Abstract Share this page

Abstract Doxorubicin (Dox), an anthracycline anticancer drug, was successfully incorporated into block copolymer vesicles of poly(trimethylene carbonate)-b-poly(L-glutamic acid) (PTMC-b-PGA) by a solvent-displacement (nanoprecipitation) method. pH conditions were shown to have a strong influence on loading capacity and release profiles. Substantial drug loading (47\% w/w) was achieved at pH 10.5. After pH neutralization, aqueous dispersions of drug-loaded vesicles were found stable for a prolonged period of time (at least 6months) without vesicle disruption or drug precipitation. Dox-loaded vesicles exhibited in vitro pH and temperature-dependent drug release profiles: release kinetics fastened in acid conditions or by increasing temperature. These features strongly support the interest of developing PTMC-b-PGA polymersomes as carriers for the controlled delivery of Dox. Copyright © 2010 Elsevier B.V. All rights reserved. This article was published in J Control Release and referenced in Journal of Biomedical Engineering and Medical Devices

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version