alexa A simulation study of three methods for detecting disease clusters.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Aamodt G, Samuelsen SO, Skrondal A

Abstract Share this page

Abstract BACKGROUND: Cluster detection is an important part of spatial epidemiology because it can help identifying environmental factors associated with disease and thus guide investigation of the aetiology of diseases. In this article we study three methods suitable for detecting local spatial clusters: (1) a spatial scan statistic (SaTScan), (2) generalized additive models (GAM) and (3) Bayesian disease mapping (BYM). We conducted a simulation study to compare the methods. Seven geographic clusters with different shapes were initially chosen as high-risk areas. Different scenarios for the magnitude of the relative risk of these areas as compared to the normal risk areas were considered. For each scenario the performance of the methods were assessed in terms of the sensitivity, specificity, and percentage correctly classified for each cluster. RESULTS: The performance depends on the relative risk, but all methods are in general suitable for identifying clusters with a relative risk larger than 1.5. However, it is difficult to detect clusters with lower relative risks. The GAM approach had the highest sensitivity, but relatively low specificity leading to an overestimation of the cluster area. Both the BYM and the SaTScan methods work well. Clusters with irregular shapes are more difficult to detect than more circular clusters. CONCLUSION: Based on our simulations we conclude that the methods differ in their ability to detect spatial clusters. Different aspects should be considered for appropriate choice of method such as size and shape of the assumed spatial clusters and the relative importance of sensitivity and specificity. In general, the BYM method seems preferable for local cluster detection with relatively high relative risks whereas the SaTScan method appears preferable for lower relative risks. The GAM method needs to be tuned (using cross-validation) to get satisfactory results.
This article was published in Int J Health Geogr and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords