alexa A single blastocyst assay optimized for detecting CRISPR Cas9 system-induced indel mutations in mice.
Genetics & Molecular Biology

Genetics & Molecular Biology

Cloning & Transgenesis

Author(s): Sakurai T, Watanabe S, Kamiyoshi A, Sato M, Shindo T

Abstract Share this page

Abstract BACKGROUND: Microinjection of clustered regulatory interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-related RNA and DNA into fertilized eggs is a novel approach for creating gene-modified mice. Blastocysts obtained just before implantation may be appropriate for testing the fidelity of CRIPSR/Cas9-mediated genome editing because they can be individually handled in vitro and obtained 3days after microinjection, thus allowing researchers to check mutations rapidly. However, it is not known whether indel mutations caused by the CRISPR/Cas9 system can be reproducibly detected in embryos. In this study, we assessed the detection of CRISPR/Cas9-induced mutations in embryos. RESULTS: T7 endonuclease I was more effective than Surveyor nuclease for detecting mutations in annealed fragments derived from 2 plasmids, which contained nearly identical sequences. Mouse fertilized eggs were microinjected with CRISPR/Cas9-related RNA/DNA to examine whether non-homologous end joining-mediated knockout and homologous recombination-mediated knockin occurred in the endogenous receptor (G protein-coupled) activity modifying protein 2 (Ramp2) gene. Individual blastocysts were lysed to obtain crude DNA solutions, which were used for polymerase chain reaction (PCR) assays. T7 endonuclease I-based PCR and sequencing analysis demonstrated that 25-100\% of the embryos were knockout embryos and 7-57\% of the embryos were knockin embryos. Our results also established that crude DNA from a single blastocyst was an appropriate template for Whole genome amplification and subsequent assessment by PCR and the T7 endonuclease I-based assay. CONCLUSIONS: The single blastocyst-based assay was useful for determining whether CRISPR/Cas9-mediated genome editing worked in murine embryos.
This article was published in BMC Biotechnol and referenced in Cloning & Transgenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_c[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords