alexa A standardized experimental fracture in the mouse tibia.


Orthopedic & Muscular System: Current Research

Author(s): Hiltunen A, Vuorio E, Aro HT

Abstract Share this page

Abstract The increased use of transgenic mice as experimental animals provides new opportunities to study the biology of fracture repair. We have developed a technique for the production of a standard closed experimental fracture in the mouse tibia. A 0.2 mm stainless-steel rod was introduced into the medullary cavity and the pre-nailed tibial shaft was fractured by an impact device, which resulted in a reproducible transverse or slightly oblique fracture pattern. The intramedullary rod maintained axial alignment, and the fractures united without displacement. On the basis of measurements of callus geometry, four-point bending tests, biochemical analyses, and quantitative histology, the progress of callus formation and remodeling occurred in a predictable sequence of healing phases. The ultimate bending loads of the fractures increased with time, reaching 74\% of the strength of intact control tibias in 4 weeks. The stiffness values of the fractures returned to normal levels and, as determined radiographically, the fractures united by external callus in 4 weeks. Radiographically, callus size, cross-sectional callus area, and callus mass peaked at 2 weeks and decreased thereafter, indicating the start of external remodeling. Histologically, the amount of mesenchymal tissue was maximal at days 5 and 7. The callus cartilage area peaked at day 9; at its maximum, it accounted for 46\% of the total callus area. Early periosteal formation of membranous new bone, followed by endochondral ossification, resulted in a linear increase of callus bone during the healing process. The healing sequence of the mouse tibial fracture was similar to that seen in the rat tibia.(ABSTRACT TRUNCATED AT 250 WORDS) This article was published in J Orthop Res and referenced in Orthopedic & Muscular System: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version