alexa A statistical segmentation method for measuring age-related macular degeneration in retinal fundus images.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Kse C, Sevik U, Genaliolu O, Ikiba C, Kayikiiolu T

Abstract Share this page

Abstract Day by day, huge amount of information is collected in medical databases. These databases include quite interesting information that could be exploited in diagnosis of illnesses and medical treatment of patients. Classification of these data is getting harder as the databases are expanded. On the other hand, automated image analysis and processing is one of the most promising areas of computer vision used in medical diagnosis and treatment. In this context, retinal fundus images, offering very high resolutions that are sufficient for most of the clinical cases, provide many indications that could be exploited in diagnosing and screening retinal degenerations or diseases. Consequently, there is a strong demand in developing automated evaluation systems to utilize the information stored in the medical databases. This study proposes an automatic method for segmentation of ARMD in retinal fundus images. The method used in the automated system extracts lesions of the ARMD by employing a statistical method. In order to do this, the statistical segmentation method is first used to extract the healthy area of the macula that is more familiar and regular than the unhealthy parts. Here, characteristic images of the patterns of the macula are extracted and used to segment the healthy textures of an eye. In addition to this, blood vessels are also extracted and then classified as healthy regions. Finally, the inverse image of the segmented image is generated which determines the unhealthy regions of the macula. The performance of the method is examined on various quality retinal fundus images. Segmented images are also compared with consecutive images of the same patient to follow up the changes in the disease.
This article was published in J Med Syst and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords