alexa A study of the critical criteria for analyte stability in high-temperature liquid chromatography.
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): Thompson JD, Carr PW

Abstract Share this page

Abstract There are three major impediments to the use of high-temperature ultrafast liquid chromatography. First, the stationary phase must be thermally stable. Over the past decade, a series of thermally stable, highly efficient stationary phases have been developed that can withstand temperatures exceeding 200 degrees C. Second, the temperature mismatch between the incoming eluent and the column must be minimized (<5 degrees C), because such a mismatch is a very serious cause of peak broadening, especially in ultrafast separations. The thermal mismatch problem can be significantly ameliorated at high column linear velocities by using narrow-bore columns (2.1-mm i.d.). Third, analytes that are exposed to high temperatures must be thermally stable on the time scale of the chromatographic run. We report here a study of the ability of a number of pharmaceuticals to withstand superambient temperatures on the time scale of fast separations. We propose criteria by which a particular analyte may be rejected as a candidate for high-temperature analysis, and we demonstrate that complex molecules are amenable to quantitation, even at temperatures in excess of 100 degrees C in the aqueous media. We also show that as the time an analyte spends on hot column decreases, the extent of on-column reaction decreases for those analytes that do react. Although the seminal work of Antia and Horvath addresses these issues from a theoretical perspective, we hope to further alleviate fear of the use of high temperatures in liquid chromatography through the empirical approach used here.
This article was published in Anal Chem and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords