alexa A study of variable hydration states in topotecan hydrochloride.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Vogt FG, DellOrco PC, Diederich AM, Su Q, Wood JL,

Abstract Share this page

Abstract Topotecan hydrochloride, a pharmaceutical compound developed as a treatment for cancer, exhibits variable hydration states in a crystalline solid form chosen for manufacturing. This variability requires additional controls for successful development, and presents a characterization and detection challenge for analytical methods. In this study, overall water content was determined by Karl Fischer titration and thermogravimetric analysis (TGA) on topotecan HCl equilibrated at different relative humidity levels. These results, when combined with information obtained from dynamic water vapor sorption and differential scanning calorimetry (DSC), indicate that this form of topotecan HCl contains 3 mol of water integral to the crystalline structure and up to two additional moles of water depending on the relative humidity. Powder X-ray diffraction experiments did not detect significant differences in topotecan HCl samples equilibrated at trihydrate and pentahydrate states, and showed that the crystal lattice dimensions are not affected unless the form is dried below the trihydrate state. This behavior is typical of crystal structures with channels that can accommodate additional loosely bound water. To study the role of the loosely bound water in the crystal structure in more detail, solid-state (13)C and (15)N nuclear magnetic resonance (NMR) were used to examine the differences between the hydration states. Both the trihydrate and pentahydrate states yielded similar solid-state NMR spectra, consistent with the lack of change in the crystal lattice. However, minor but readily detectable differences in the (13)C spectra are observed with changes in water content. Interpretation of this data suggests that the loosely bound channel water is hydrogen-bonding to specific portions of the topotecan parent molecule. Topotecan HCl trihydrate was hydrated with D(2)O vapor to confirm the nature and location of the channel water using (13)C and (2)H solid-state NMR. Despite the detectable association of the channel water with hydrogen bonding sites on the topotecan molecule, (2)H quadrupolar echo experiments indicate that the channel water is highly mobile at room temperature and at -60 degrees C. This article was published in J Pharm Biomed Anal and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords