alexa A support vector machine formulation to PCA analysis and its kernel version.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Suykens JK, Van Gestel T, Vandewalle J, De Moor B

Abstract Share this page

Abstract In this paper, we present a simple and straightforward primal-dual support vector machine formulation to the problem of principal component analysis (PCA) in dual variables. By considering a mapping to a high-dimensional feature space and application of the kernel trick (Mercer theorem), kernel PCA is obtained as introduced by Scholkopf et al. (2002). While least squares support vector machine classifiers have a natural link with the kernel Fisher discriminant analysis (minimizing the within class scatter around targets +1 and -1), for PCA analysis one can take the interpretation of a one-class modeling problem with zero target value around which one maximizes the variance. The score variables are interpreted as error variables within the problem formulation. In this way primal-dual constrained optimization problem interpretations to the linear and kernel PCA analysis are obtained in a similar style as for least square-support vector machine classifiers. This article was published in IEEE Trans Neural Netw and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version