alexa A survey of the methods for the characterization of microbial consortia and communities.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Spiegelman D, Whissell G, Greer CW

Abstract Share this page

Abstract A survey of the available literature on methods most frequently used for the identification and characterization of microbial strains, communities, or consortia is presented. The advantages and disadvantages of the various methodologies were examined from several perspectives including technical, economic (time and cost), and regulatory. The methods fall into 3 broad categories: molecular biological, biochemical, and microbiological. Molecular biological methods comprise a broad range of techniques that are based on the analysis and differentiation of microbial DNA. This class of methods possesses several distinct advantages. Unlike most other commonly used methods, which require the production of secondary materials via the manipulation of microbial growth, molecular biological methods recover and test their source materials (DNA) directly from the microbial cells themselves, without the requirement for culturing. This eliminates both the time required for growth and the biases associated with cultured growth, which is unavoidably and artificially selective. The recovered nucleic acid can be cloned and sequenced directly or subpopulations can be specifically amplified using polymerase chain reaction (PCR), and subsequently cloned and sequenced. PCR technology, used extensively in forensic science, provides researchers with the unique ability to detect nucleic acids (DNA and RNA) in minute amounts, by amplifying a single target molecule by more than a million-fold. Molecular methods are highly sensitive and allow for a high degree of specificity, which, coupled with the ability to separate similar but distinct DNA molecules, means that a great deal of information can be gleaned from even very complex microbial communities. Biochemical methods are composed of a more varied set of methodologies. These techniques share a reliance on gas chromatography and mass spectrometry to separate and precisely identify a range of biomolecules, or else investigate biochemical properties of key cellular biomolecules. Like the molecular biological methods, some biochemical methods such as lipid analyses are also independent of cultured growth. However, many of these techniques are only capable of producing a profile that is characteristic of the microbial community as a whole, providing no information about individual members of the community. A subset of these methodologies are used to derive taxonomic information from a community sample; these rely on the identification of key subspecies of biomolecules that differ slightly but characteristically between species, genera, and higher biological groupings. However, when the consortium is already growing in chemically defined media (as is often the case with commercial products), the rapidity and relatively low costs of these procedures can mitigate concerns related to culturing biases. Microbiological methods are the most varied and the least useful for characterizing microbial consortia. These methods rely on traditional tools (cell counting, selective growth, and microscopic examination) to provide more general characteristics of the community as a whole, or else to narrow down and identify only a small subset of the members of that community. As with many of the biochemical methods, some of the microbiological methods can fairly rapidly and inexpensively create a community profile, which can be used to compare 2 or more entire consortia. However, for taxonomic identification of individual members, microbiological methods are useful only to screen for the presence of a few key predetermined species, whose preferred growth conditions and morphological characteristics are well defined and reproducible. This article was published in Can J Microbiol and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords