alexa A temporal hidden Markov regression model for the analysis of gene regulatory networks.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Gupta M, Qu P, Ibrahim JG

Abstract Share this page

Abstract We propose a novel hierarchical hidden Markov regression model for determining gene regulatory networks from genomic sequence and temporally collected gene expression microarray data. The statistical challenge is to simultaneously determine the groupings of genes and subsets of motifs involved in their regulation, when the groupings may vary over time, and a large number of potential regulators are available. We devise a hybrid Monte Carlo methodology to estimate parameters under 2 classes of latent structure, one arising due to the unobservable state identity of genes and the other due to the unknown set of covariates influencing the response within a state. The effectiveness of this method is demonstrated through a simulation study and an application on an yeast cell-cycle data set. This article was published in Biostatistics and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version