alexa A theoretical study of oxygen transfer including cell necrosis for the design of a bioartificial pancreas.


Surgery: Current Research

Author(s): Dulong JL, Legallais C

Abstract Share this page

Abstract In an extravascular bioartificial pancreas (BAP), islet functions are probably limited by diffusive mass transfer and local consumption, leading to low oxygenation. A mathematical model based on finite elements and focusing on local oxygen transport in both the alginate core and the islets of Langerhans has been proposed to help design an efficient pancreas supply. It was possible to randomly localize islets in a hollow fiber at different densities, and the effects of hypoxia and necrosis were included in the mass transfer simulations. Thorough study of the numerical results first led to the analysis of several relevant parameters, such as necrosis factor and efficacy in terms of insulin secretion, as a way to optimize fiber geometry. The approach was then to calculate the number of islets that needed to be implanted in order to obtain a correct response in terms of insulin secretion. In most configurations, it was found to be much higher than that of ultimately functional islets, because of hypoxia and necrosis. Fiber length should thus be adjusted accordingly. Finally, we demonstrated that the compromise to be found between the reduction of the number of implanted islets and fiber length and diameter did not correspond to realistic hollow fiber systems. The alternative of using flat geometry was also envisaged with more optimistic feasibility assessments. (c) 2006 Wiley Periodicals, Inc. This article was published in Biotechnol Bioeng and referenced in Surgery: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version