alexa A theoretical study of single-cell electroporation in a microchannel.
Molecular Biology

Molecular Biology

Cell & Developmental Biology

Author(s): Movahed S, Li D

Abstract Share this page

Abstract Electroporation of a single cell in a microchannel was studied. The effects of electrical (e.g., strength of the electric pulse) and geometrical (e.g., microchannel height, electrode size and position) parameters on cell membrane permeabilization were investigated. The electrodes were assumed to be embedded in the walls of the microchannel; the cell was suspended between these two electrodes. By keeping the electric pulse constant, increasing the microchannel height reduces the number and the radius of the biggest nanopores, as well as the electroporated area of the cell membrane. If the width of the electrodes is bigger than the cell diameter, the transmembrane potential will be centralized and have a sinusoidal distribution around the cell if nanopores are not generated. As the width of the electrode decreases and becomes smaller than the cell diameter, the local transmembrane potential decreases; in the nonelectroporative area, the transmembrane potential distribution deviates from the sinusoidal behavior; the induced transmembrane potential also concentrates around the poles of the cell membrane (the nearest points of the cell membrane to the electrodes). During cell membrane permeabilization, the biggest nanopores are initially created at the poles and then the nanopore population expands toward the equator. The number of the created nanopores reaches its maximal value within a few microseconds; further presence of the electric pulse may not influence the number and location of the created nanopores anymore but will develop the generated nanopores. Strengthening the electric pulse intensifies the size and number of the created nanopores as well as the electroporated area on the cell membrane. This article was published in J Membr Biol and referenced in Cell & Developmental Biology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords