alexa A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): George SR, Lee SP, Varghese G, Zeman PR, Seeman P,

Abstract Share this page

Abstract In this study, we show that a peptide based on the sequence of transmembrane domain 6 of the D1 dopamine receptor (D1DR) specifically inhibited D1DR binding and function, without affecting receptor oligomerization. It has been shown that an analogous peptide from the beta2-adrenergic receptor disrupted dimerization and adenylyl cyclase activation in the beta2-adrenergic receptor (Hebert, T. E., Moffett, S., Morello, J. P., Loisel, T. P., Bichet, D. G., Barret, C., and Bouvier, M. (1996) J. Biol. Chem. 271, 16384-16392). Treatment of D1DR with the D1DR transmembrane 6 peptide resulted in a dose-dependent, irreversible inhibition of D1DR antagonist binding, an effect not seen in D1DR with peptides based on transmembrane domains of other G protein-coupled receptors. Incubation with the D1DR transmembrane 6 peptide also resulted in a dose-dependent attenuation of both dopamine-induced [35S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and receptor-mediated dopamine stimulation of adenylyl cyclase activity. Notably, GTPgammaS binding and cAMP production were reduced to levels below baseline, indicating blockade of ligand-independent, intrinsic receptor activity. Immunoblot analyses of the D1DR revealed the receptor existed as monomers, dimers, and higher order oligomers and that these oligomeric states were unaffected after incubation with the D1DR transmembrane 6 peptide. These findings represent the first demonstration that a peptide based on the transmembrane 6 of the D1DR may represent a novel category of noncompetitive D1DR antagonists.
This article was published in J Biol Chem and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords