alexa A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Fabien Lotte

Abstract Share this page

This chapter presents an introductory overview and a tutorial of signal-processing techniques that can be used to recognize mental states from electroencephalographic (EEG) signals in brain–computer interfaces. More particularly, this chapter presents how to extract relevant and robust spectral, spatial, and temporal information from noisy EEG signals (e.g., band-power features, spatial filters such as common spatial patterns or xDAWN, etc.), as well as a few classification algorithms (e.g., linear discriminant analysis) used to classify this information into a class of mental state. It also briefly touches on alternative, but currently less used approaches. The overall objective of this chapter is to provide the reader with practical knowledge about how to analyze EEG signals as well as to stress the key points to understand when performing such an analysis.

  • To read the full article Visit
  • Open Access
This article was published in Guide to Brain-Computer Music Interfacing and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version