alexa A unified framework for detecting rare variant quantitative trait associations in pedigree and unrelated individuals via sequence data.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Liu DJ, Leal SM

Abstract Share this page

Abstract OBJECTIVES: There is great interest to sequence unrelated or pedigree samples for detecting rare variant quantitative trait associations. In order to reduce the cost of sequencing and improve power, many studies sequence selected samples with extreme traits. Existing methods for detecting rare variant associations were developed for unrelated samples. Methods are needed to analyze (selected or randomly ascertained) pedigree samples. METHODS: We propose a unified framework of modeling extreme trait genetic associations (MEGA) with rare variants. Using MEGA and appropriate permutation algorithms, many rare variant tests can be extended to family data. As an application, we compared study designs using both sib-pairs and unrelated individuals. Extensive simulations were carried out using realistic population genetic and complex trait models. RESULTS: It is demonstrated that when extreme sampling is implemented within equal-sized cohorts of unrelated individuals or sib-pairs, analyzing unrelated individuals is consistently more powerful than studying sib-pairs. A higher portion of rare variants can be identified through sequencing unrelated samples compared to sibs. Alternatively, if samples are ascertained using fixed thresholds from an infinite-sized population, sequencing one sib with the most extreme trait from each extreme concordant sib-pair is consistently the most powerful design. CONCLUSIONS: MEGA will play an important role in the analysis of sequence-based genetic association studies. Copyright © 2012 S. Karger AG, Basel.
This article was published in Hum Hered and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version