alexa A unified framework for detecting rare variant quantitative trait associations in pedigree and unrelated individuals via sequence data.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Liu DJ, Leal SM

Abstract Share this page

Abstract OBJECTIVES: There is great interest to sequence unrelated or pedigree samples for detecting rare variant quantitative trait associations. In order to reduce the cost of sequencing and improve power, many studies sequence selected samples with extreme traits. Existing methods for detecting rare variant associations were developed for unrelated samples. Methods are needed to analyze (selected or randomly ascertained) pedigree samples. METHODS: We propose a unified framework of modeling extreme trait genetic associations (MEGA) with rare variants. Using MEGA and appropriate permutation algorithms, many rare variant tests can be extended to family data. As an application, we compared study designs using both sib-pairs and unrelated individuals. Extensive simulations were carried out using realistic population genetic and complex trait models. RESULTS: It is demonstrated that when extreme sampling is implemented within equal-sized cohorts of unrelated individuals or sib-pairs, analyzing unrelated individuals is consistently more powerful than studying sib-pairs. A higher portion of rare variants can be identified through sequencing unrelated samples compared to sibs. Alternatively, if samples are ascertained using fixed thresholds from an infinite-sized population, sequencing one sib with the most extreme trait from each extreme concordant sib-pair is consistently the most powerful design. CONCLUSIONS: MEGA will play an important role in the analysis of sequence-based genetic association studies. Copyright © 2012 S. Karger AG, Basel.
This article was published in Hum Hered and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version