alexa A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Kitada M, , Ogura Y, Suzuki T, Sen S,

Abstract Share this page

Abstract AIMS/HYPOTHESIS: The efficacy of a low-protein diet (LPD) on diabetic nephropathy is controversial. We aimed to investigate the renoprotective effects of an LPD and the underlying molecular mechanism in a rat model of type 2 diabetes and obesity. METHODS: Diabetic male Wistar fatty (fa/fa) rats (WFRs) were treated with a standard diet (23.84\% protein) or an LPD (5.77\% protein) for 20 weeks from 24 weeks of age. We investigated the effect of the LPD on renal function, fibrosis, tubular cell damage, inflammation, mitochondrial morphology of proximal tubular cells (PTCs), apoptosis, autophagy and activation of mammalian target of rapamycin complex 1 (mTORC1). RESULTS: Kidney weight, albuminuria, excretion of urinary liver-type fatty acid binding protein, levels of plasma cystatin C and changes in renal histology, including fibrosis, tubular cell damage and inflammation, were aggravated in WFRs compared with non-diabetic Wistar lean rats (WLRs). Fragmented and swelling mitochondria accumulated in PTCs and apoptosis were enhanced in the kidney of WFRs. Immunohistochemical staining of p62 and p-S6 ribosomal protein (p-S6RP) in the tubular lesions of WFRs was increased compared with WLRs. The LPD intervention clearly ameliorated damage as shown by the assessment of renal function and histology, particularly tubulointerstitial damage in diabetic kidneys. Additionally, the 5.77\% LPD, but not the 11.46\% LPD, significantly suppressed p-S6RP levels and increased microtubule-associated protein light chain 3-II levels in the renal cortex. The LPD intervention partially decreased HbA1c levels in WFRs, and no differences in mean BP were observed among any of the groups. CONCLUSIONS/INTERPRETATION: A very-low-protein diet improved advanced diabetic renal injuries, including tubulointerstitial damage, by restoring autophagy through the suppression of the mTORC1 pathway. This article was published in Diabetologia and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version