alexa A whole-body mathematical model of cholesterol metabolism and its age-associated dysregulation.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Mc Auley MT, Wilkinson DJ, Jones JJ, Kirkwood TB

Abstract Share this page

Abstract BACKGROUND: Global demographic changes have stimulated marked interest in the process of aging. There has been, and will continue to be, an unrelenting rise in the number of the oldest old ( >85 years of age). Together with an ageing population there comes an increase in the prevalence of age related disease. Of the diseases of ageing, cardiovascular disease (CVD) has by far the highest prevalence. It is regarded that a finely tuned lipid profile may help to prevent CVD as there is a long established relationship between alterations to lipid metabolism and CVD risk. In fact elevated plasma cholesterol, particularly Low Density Lipoprotein Cholesterol (LDL-C) has consistently stood out as a risk factor for having a cardiovascular event. Moreover it is widely acknowledged that LDL-C may rise with age in both sexes in a wide variety of groups. The aim of this work was to use a whole-body mathematical model to investigate why LDL-C rises with age, and to test the hypothesis that mechanistic changes to cholesterol absorption and LDL-C removal from the plasma are responsible for the rise. The whole-body mechanistic nature of the model differs from previous models of cholesterol metabolism which have either focused on intracellular cholesterol homeostasis or have concentrated on an isolated area of lipoprotein dynamics. The model integrates both current and previously published data relating to molecular biology, physiology, ageing and nutrition in an integrated fashion. RESULTS: The model was used to test the hypothesis that alterations to the rate of cholesterol absorption and changes to the rate of removal of LDL-C from the plasma are integral to understanding why LDL-C rises with age. The model demonstrates that increasing the rate of intestinal cholesterol absorption from 50\% to 80\% by age 65 years can result in an increase of LDL-C by as much as 34 mg/dL in a hypothetical male subject. The model also shows that decreasing the rate of hepatic clearance of LDL-C gradually to 50\% by age 65 years can result in an increase of LDL-C by as much as 116 mg/dL. CONCLUSIONS: Our model clearly demonstrates that of the two putative mechanisms that have been implicated in the dysregulation of cholesterol metabolism with age, alterations to the removal rate of plasma LDL-C has the most significant impact on cholesterol metabolism and small changes to the number of hepatic LDL receptors can result in a significant rise in LDL-C. This first whole-body systems based model of cholesterol balance could potentially be used as a tool to further improve our understanding of whole-body cholesterol metabolism and its dysregulation with age. Furthermore, given further fine tuning the model may help to investigate potential dietary and lifestyle regimes that have the potential to mitigate the effects aging has on cholesterol metabolism.
This article was published in BMC Syst Biol and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords