alexa Ab Initio Kinetic Modelling in Radical Polymerization: A Paradigm Shift in Reaction Kinetic Analysis
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): Michelle L Coote, Christopher BarnerKowollik

Abstract Share this page

We describe a new rationale to kinetic modelling in which adjustable parameters are avoided through the use of quantum chemistry. This new approach reverses the standard modelling approach in which, having first assumed a kinetic model, it is then fitted to the experimentally determined values of the macroscopic properties (rates, compositions, molecular weight distributions, and so forth) so as to estimate the rate coefficients of the individual reactions. Instead, one still assumes a reaction scheme, but then calculates the rates of the individual reactions using high-level ab initio calculations, and in this way a kinetic model is built that can be used to predict the macroscopic properties of the process from first principles. These can then be compared directly with experiment (for benchmarking purposes) and subsequently be employed to predict the outcome of new chemical processes. In here we illustrate the ab initio modelling technique, using a recent study of initialization in RAFT polymerization as a case study. We also discuss its advantages and possible problems, and highlight some of its potential applications in the radical polymer field.

This article was published in Austrailian Journal of Chemistry and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version