alexa Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation.
Biochemistry

Biochemistry

Biochemistry & Physiology: Open Access

Author(s): Lth HJ, Mnch G, Arendt T

Abstract Share this page

Abstract Various isoforms of the nitric oxide (NO) producing enzyme nitric oxide synthase (NOS) are elevated in Alzheimer's disease (AD) indicating a critical role for NO in the pathomechanism. NO can react with superoxide to generate peroxynitrite, a process referred to as oxidative stress, which is likely to play a role in AD. Peroxynitrite in turn, nitrates tyrosine residues to form nitrotyrosine which can be identified immunohistochemically. To study the potential structural link between the increased synthesis of NO and the deposition of nitrotyrosine in AD, we analyzed the expression of neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) in AD and control brain, and compared the localization with the distribution of nitrotyrosine. Nitrotyrosine was detected in neurons, astrocytes and blood vessels in AD cases. Aberrant expression of nNOS in cortical pyramidal cells was highly co-localized with nitrotyrosine. Furthermore, iNOS and eNOS were highly expressed in astrocytes in AD. In addition, double immunolabeling studies revealed that in these glial cells iNOS and eNOS are co-localized with nitrotyrosine. Therefore, it is suggested that increased expression of all NOS isoforms in astrocytes and neurons contributes to the synthesis of peroxynitrite which leads to generation of nitrotyrosine. In view of the wide range of isoform-specific NOS inhibitors, the determination of the most responsible isoform of NOS for the formation of peroxynitrite in AD could be of therapeutic importance in the treatment of Alzheimer's disease.
This article was published in Brain Res and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords