alexa ABGD, Automatic Barcode Gap Discovery for primary species delimitation.
General Science

General Science

Entomology, Ornithology & Herpetology: Current Research

Author(s): Puillandre N, Lambert A, Brouillet S, Achaz G

Abstract Share this page

Abstract Within uncharacterized groups, DNA barcodes, short DNA sequences that are present in a wide range of species, can be used to assign organisms into species. We propose an automatic procedure that sorts the sequences into hypothetical species based on the barcode gap, which can be observed whenever the divergence among organisms belonging to the same species is smaller than divergence among organisms from different species. We use a range of prior intraspecific divergence to infer from the data a model-based one-sided confidence limit for intraspecific divergence. The method, called Automatic Barcode Gap Discovery (ABGD), then detects the barcode gap as the first significant gap beyond this limit and uses it to partition the data. Inference of the limit and gap detection are then recursively applied to previously obtained groups to get finer partitions until there is no further partitioning. Using six published data sets of metazoans, we show that ABGD is computationally efficient and performs well for standard prior maximum intraspecific divergences (a few per cent of divergence for the five data sets), except for one data set where less than three sequences per species were sampled. We further explore the theoretical limitations of ABGD through simulation of explicit speciation and population genetics scenarios. Our results emphasize in particular the sensitivity of the method to the presence of recent speciation events, via (unrealistically) high rates of speciation or large numbers of species. In conclusion, ABGD is fast, simple method to split a sequence alignment data set into candidate species that should be complemented with other evidence in an integrative taxonomic approach. © 2011 Blackwell Publishing Ltd. This article was published in Mol Ecol and referenced in Entomology, Ornithology & Herpetology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

  • R Gandhi Gracy
    DO Insect - Bacterial Symbiosis contributing insecticidal resistance: An evidence from Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae)
    PPT Version | PDF Version

Recommended Conferences

  • World conference on Ecology and Ecosystems
    September 11-13, 2017, San Antonio, USA
  • 3rd International Conference on Green Energy and Expo
    September 28-29, 2017, Berlin, Germany
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version