alexa Abnormalities of presynaptic protein CDCrel-1 in striatum of rats reared in social isolation: relevance to neural connectivity in schizophrenia.


Brain Disorders & Therapy

Author(s): Barr AM, Young CE, Sawada K, Trimble WS, Phillips AG,

Abstract Share this page

Abstract Post-weaning social isolation-rearing of rats leads to behavioural and neurochemical sequelae that model aspects of schizophrenia, and it may be useful to test hypotheses related to putative molecular mechanisms of the illness. In humans, the presynaptic protein CDCrel-1 represents an interesting candidate molecule for the mechanism and aetiology of schizophrenia. CDCrel-1 modulates dopamine neurotransmission, binds to the SNARE protein syntaxin and maps onto a region of chromosome 22q11 deleted in velo-cardio-facial and DiGeorge syndromes, which are associated with increased prevalence of schizophrenia. Using the isolation-rearing model, we measured immunoreactivity of the synaptic proteins CDCrel-1, synaptophysin and syntaxin. Male, Sprague-Dawley rats were raised in groups or in isolation for 12 weeks from weaning. Synaptic protein immunoreactivities were measured in striatal and hippocampal homogenates, using a sensitive enzyme-linked immunoadsorbent assay with monoclonal antibodies. Isolation-rearing produced region- and protein-specific effects. CDCrel-1 immunoreactivity was significantly lower in the striatum and marginally higher in the hippocampus of isolation-reared compared with socially reared animals. There were no statistically significant differences in synaptophysin immunoreactivity in either region. Confocal microscopy demonstrated a high degree of colocalization between the two presynaptic proteins. In striatum, a robust relationship between CDCrel-1 and syntaxin immunoreactivities was observed in socially reared rats, this was lost in the isolation-reared animals. Altered levels of the septin CDCrel-1 in isolation-reared rats may contribute to changes in neuronal connectivity and neurotransmission, and suggest a potential role for CDCrel-1 in schizophrenia related to chromosome 22q11 deletion syndrome. This article was published in Eur J Neurosci and referenced in Brain Disorders & Therapy

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version