alexa Accelerated wound healing by mTOR activation in genetically defined mouse models.


Journal of Clinical Toxicology

Author(s): Squarize CH, Castilho RM, Bugge TH, Gutkind JS

Abstract Share this page

Abstract BACKGROUND: The management of slow or non-healing ulcerations constitutes an increasing clinical challenge in the developed world because of the ageing of the population and the pandemic rise in type II diabetes. Recent studies suggest that molecular circuitries deployed by tumor cells to promote cancerous growth may also contribute to tissue regeneration. Here, we exploited this emerging information to search for novel molecular targets to accelerate wound healing. METHODOLOGY/PRINCIPAL FINDINGS: We found that the activation of the PI3K-Akt-mTOR pathway, whose aberrant function is a frequent event in human neoplasia, represents an integral component of the normal wound healing process. By the use of genetically defined approaches, including the epithelial-specific ablation of Pten and Tsc1, we show that mTOR activation can dramatically increase epithelial cell proliferation, migration, and cutaneous wound healing, while pharmacological inhibition of mTOR with rapamycin delays wound closure. CONCLUSIONS/SIGNIFICANCE: Overall, our findings indicate that the transient pharmacologic activation of the PI3K-Akt-mTOR signaling axis may represent a novel clinical intervention strategy to accelerate the healing of debilitating and life-threatening wounds.
This article was published in PLoS One and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version