alexa ACCELERATION OF RENAL GLUCONEOGENESIS BY KETONE BODIES AND FATTY ACIDS.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): KREBS HA, SPEAKE RN, HEMS R

Abstract Share this page

Abstract 1. Acetoacetate or short-chain fatty acids (acetate, butyrate, propionate, n-hexanoate, n-octanoate) accelerate the rate of glucose formation from lactate, fumarate and other precursors in slices of kidney cortex (rat, rabbit, sheep). The cause of this acceleration has been investigated. 2. There are two different mechanisms of acceleration. At low concentrations of glucogenic precursors the acceleration is mainly due to a ;sparing' action. The substances which accelerate are oxidizable and serve as fuel of respiration in place of the glucogenic precursor. This is indicated by the fact that the ratio lactate used/glucose formed falls in the presence of the accelerators and approaches the value 2. 3. At high concentrations of lactate the acceleration appears to be mainly due to the activation of pyruvate carboxylase by acetyl-coenzyme A. The evidence in support of this is summarized. The results indicate that the activation of pyruvate carboxylase by acyl-coenzyme A discovered by Utter & Keech (1963) in purified enzyme preparations also occurs in crude tissue homogenates and can play a part in the control of oxaloacetate synthesis and gluconeogenesis.
This article was published in Biochem J and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords