alexa Acclimatization of soil respiration to warming in a tall grass prairie.
Geology & Earth Science

Geology & Earth Science

Journal of Geology & Geophysics

Author(s): Luo Y, Wan S, Hui D, Wallace LL

Abstract Share this page

Abstract The latest report by the Intergovernmental Panel on Climate Change (IPCC) predicts a 1.4-5.8 degrees C average increase in the global surface temperature over the period 1990 to 2100 (ref. 1). These estimates of future warming are greater than earlier projections, which is partly due to incorporation of a positive feedback. This feedback results from further release of greenhouse gases from terrestrial ecosystems in response to climatic warming. The feedback mechanism is usually based on the assumption that observed sensitivity of soil respiration to temperature under current climate conditions would hold in a warmer climate. However, this assumption has not been carefully examined. We have therefore conducted an experiment in a tall grass prairie ecosystem in the US Great Plains to study the response of soil respiration (the sum of root and heterotrophic respiration) to artificial warming of about 2 degrees C. Our observations indicate that the temperature sensitivity of soil respiration decreases--or acclimatizes--under warming and that the acclimatization is greater at high temperatures. This acclimatization of soil respiration to warming may therefore weaken the positive feedback between the terrestrial carbon cycle and climate. This article was published in Nature and referenced in Journal of Geology & Geophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords