alexa Accurate prediction of protein secondary structural content.
Biomedical Sciences

Biomedical Sciences

International Journal of Biomedical Data Mining

Author(s): Lin Z, Pan XM

Abstract Share this page

Abstract An improved multiple linear regression (MLR) method is proposed to predict a protein's secondary structural content based on its primary sequence. The amino acid composition, the autocorrelation function, and the interaction function of side-chain mass derived from the primary sequence are taken into account. The average absolute errors of prediction over 704 unrelated proteins with the jackknife test are 0.088, 0.081, and 0.059 with standard deviations 0.073, 0.066, and 0.055 for alpha-helix, beta-sheet, and coil, respectively. That the sum of predicted secondary structure content should be close to 1.0 was introduced as a criterion to evaluate whether the prediction is acceptable. While only the predictions with the sum of predicted secondary structure content between 0.99 and 1.01 are accepted (about 11\% of all proteins), the absolute errors are 0.058 for alpha-helix, 0.054 for beta-sheet, and 0.045 for coil.
This article was published in J Protein Chem and referenced in International Journal of Biomedical Data Mining

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords