alexa Acid-mediated tumor invasion: a multidisciplinary study.
Nutrition

Nutrition

Journal of Nutrition & Food Sciences

Author(s): Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ

Abstract Share this page

Abstract The acid-mediated tumor invasion hypothesis proposes altered glucose metabolism and increased glucose uptake, observed in the vast majority of clinical cancers by fluorodeoxyglucose-positron emission tomography, are critical for development of the invasive phenotype. In this model, increased acid production due to altered glucose metabolism serves as a key intermediate by producing H(+) flow along concentration gradients into adjacent normal tissue. This chronic exposure of peritumoral normal tissue to an acidic microenvironment produces toxicity by: (a) normal cell death caused by the collapse of the transmembrane H(+) gradient inducing necrosis or apoptosis and (b) extracellular matrix degradation through the release of cathepsin B and other proteolytic enzymes. Tumor cells evolve resistance to acid-induced toxicity during carcinogenesis, allowing them to survive and proliferate in low pH microenvironments. This permits them to invade the damaged adjacent normal tissue despite the acid gradients. Here, we describe theoretical and empirical evidence for acid-mediated invasion. In silico simulations using mathematical models provide testable predictions concerning the morphology and cellular and extracellular dynamics at the tumor-host interface. In vivo experiments confirm the presence of peritumoral acid gradients as well as cellular toxicity and extracellular matrix degradation in the normal tissue exposed to the acidic microenvironment. The acid-mediated tumor invasion model provides a simple mechanism linking altered glucose metabolism with the ability of tumor cells to form invasive cancers. This article was published in Cancer Res and referenced in Journal of Nutrition & Food Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Public Health, Epidemiology & Nutrition
    November 13-14, 2017 Osaka, Japan
  • Food Processing & Technology
    December 05-07, 2016 San Antonio, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords