alexa Activation of the human estrogen receptor by the antiestrogens ICI 182,780 and tamoxifen in yeast genetic systems: implications for their mechanism of action.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Dudley MW, Sheeler CQ, Wang H, Khan S

Abstract Share this page

Abstract The antiestrogens tamoxifen and ICI 182,780 have been portrayed as competitive antagonists of the estrogen binding site of the alpha-form of the human estrogen receptor (ER). However, in functional studies, neither compound has consistently been able to block estradiol-induced transcription. In this report, three yeast genetic systems were used to investigate the effects of tamoxifen and ICI 182,780 on ER dimerization, transcriptional activation, and the interaction of the receptor with a coactivator, RIP140. Tamoxifen and ICI 182,780 were able to induce ER dimerization and ER-dependent transcription, albeit at up to 15,000-fold higher concentrations than that of estradiol. In the presence of RIP140, the transcription response maximum was increased up to 30-fold for estradiol and both antiestrogens. Whole yeast cell [(3)H]estradiol binding studies demonstrated that tamoxifen could displace the estradiol from the ER, whereas ICI 182,780 treatment resulted in a 4-fold increase in [(3)H]estradiol binding to the receptor. No antagonism of estradiol was observed with tamoxifen or ICI 182,780 in any of the yeast models employed. We have concluded that the antiestrogen activity of compounds like tamoxifen and ICI 182,780 is not caused by their ability to competitively antagonize estradiol binding to the hormone binding site, but possibly by their ability to induce ER-dependent transcription, which in mammalian systems would result in receptor down-regulation. Compounds such as tamoxifen act through the hormone binding site, whereas ICI 182,780 may cause receptor activation through an allosteric binding site.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords