alexa Activation tagging, a novel tool to dissect the functions of a gene family.


Single Cell Biology

Author(s): Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, , Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y,

Abstract Share this page

Abstract In a screen for morphological mutants from the T1 generation of approximately 50 000 activation-tagging lines, we isolated four dominant mutants that showed hyponastic leaves, downward-pointing flowers and decreased apical dominance. We designated them isoginchaku (iso). The iso-1D and iso-2D are allelic mutants caused by activation of the AS2 gene. The T-DNAs were inserted in the 3' downstream region of AS2. Iso-3D and iso-4D are the other allelic mutants caused by activation of the ASL1/LBD36 gene. These two genes belong to the AS2 family that is composed of 42 genes in Arabidopsis. The only recessive mutation isolated from this gene family was of AS2, which resulted in a leaf morphology mutant. Applying reverse genetics using a database of activation-tagged T-DNA flanking sequences, we found a dominant mutant that we designated peacock1-D (pck1-D) in which the ASL5/LBD12 gene was activated by a T-DNA. The pck1-D mutants have lost apical dominance, have epinastic leaves and are sterile. These results strongly suggest that activation tagging is a powerful mutant-mining tool especially for genes that make up a gene family.
This article was published in Plant J and referenced in Single Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version