alexa Active suppression of the pulmonary immune response by Francisella tularensis Schu4.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Bosio CM, BielefeldtOhmann H, Belisle JT, Bosio CM, BielefeldtOhmann H, Belisle JT

Abstract Share this page

Abstract Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been shown to target multiple cell types in the lung following aerosol infection, including dendritic cells (DC) and macrophages. We demonstrate here that one mechanism used by a virulent type A strain of F. tularensis (Schu4) to evade early detection is by the induction of overwhelming immunosuppression at the site of infection, the lung. Following infection and replication in multiple pulmonary cell types, Schu4 failed to induce the production of proinflammatory cytokines or increase the expression of MHCII or CD86 on the surface of resident DC within the first few days of disease. However, Schu4 did induce early and transient production of TGF-beta, a potent immunosuppressive cytokine. The absence of DC activation following infection could not be attributed to the apoptosis of pulmonary cells, because there were minimal differences in either annexin or cleaved caspase-3 staining in infected mice compared with that in uninfected controls. Rather, we demonstrate that Schu4 actively suppressed in vivo responses to secondary stimuli (LPS), e.g., failure to recruit granulocytes/monocytes and stimulate resident DC. Thus, unlike attenuated strains of F. tularensis, Schu4 induced broad immunosuppression within the first few days after aerosol infection. This difference may explain the increased virulence of type A strains compared with their more attenuated counterparts.
This article was published in J Immunol and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version