alexa Active transport properties of porcine choroid plexus cells in culture.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Hakvoort A, Haselbach M, Galla HJ

Abstract Share this page

Abstract We have investigated the transport properties of cultured porcine choroid plexus cells grown on permeable membranes and in serum-free medium. Withdrawal of serum yielded cell cultures with permeabilities low enough to establish and maintain a pH-gradient between the two compartments of the filter system and to allow apical fluid secretion. This became possible because of ten-fold increased electrical resistance of 1700 Omega cm2 in the absence of serum. These plexus epithelial cells transported phenol red, fluorescein, riboflavin and penicillin G from the apical to the basolateral side. KM values and vmax were determined and come close to in vivo values. Competitive inhibition with probenicid showed that the organic anion transporter is involved. Riboflavin transport however was not completely inhibited and did not respond quantitatively to the stilben derivate SITS that blocks the Cl-/HCO3--exchanger. We assume that an additional transport system exists for riboflavin. Ascorbic acid and myo-inositol were transported from the basolateral to the apical side in vitro which strongly resembles the in vivo transport from the blood to the cerebrospinal fluid. Again the experimental in vitro KM values come close to the in vivo values. The established epithelial cell culture model thus closely mimics the blood-CSF-barrier and may be a useful tool to further elucidate transport to and from the brain. Copyright 1998 Elsevier Science B.V. All rights reserved.
This article was published in Brain Res and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version