alexa Activity-dependent plasticity: implications for recovery after spinal cord injury.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Dunlop SA

Abstract Share this page

Abstract Spinal cord injury causes devastating loss of function and progressive, potentially life-threatening, secondary complications. Although significant preclinical advances continue to be made in cellular and molecular therapies which promote regeneration, plasticity within remaining circuits and how it can be influenced by physical activity is evolving as a key research area. Understanding what constitutes plasticity, and how activity shapes it, has centred primarily on neurons, but evidence is emerging that activity also influences glial cells. Basic and clinical research continue to advance our knowledge of the quality and quantity of physical exercise required to improve function, while mental exercise is emerging as another avenue. Increased understanding of mechanisms driving activity-dependent plasticity will help develop rehabilitative strategies which optimise functional recovery. This article was published in Trends Neurosci and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version