alexa Activity-dependent spinal cord plasticity in health and disease.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Wolpaw JR, Tennissen AM

Abstract Share this page

Abstract Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input from the periphery and the brain, this plasticity plays an important role in the acquisition and maintenance of motor skills and in the effects of spinal cord injury and other central nervous system disorders. The responses of the isolated spinal cord to sensory input display sensitization, long-term potentiation, and related phenomena that contribute to chronic pain syndromes; they can also be modified by both classical and operant conditioning protocols. In animals with transected spinal cords and in humans with spinal cord injuries, treadmill training gradually modifies the spinal cord so as to improve performance. These adaptations by the isolated spinal cord are specific to the training regimen and underlie new approaches to restoring function after spinal cord injury. Descending inputs from the brain that occur during normal development, as a result of supraspinal trauma, and during skill acquisition change the spinal cord. The early development of adult spinal cord reflex patterns is driven by descending activity; disorders that disrupt descending activity later in life gradually change spinal cord reflexes. Athletic training, such as that undertaken by ballet dancers, is associated with gradual alterations in spinal reflexes that appear to contribute to skill acquisition. Operant conditioning protocols in animals and humans can produce comparable reflex changes and are associated with functional and structural plasticity in the spinal cord, including changes in motoneuron firing threshold and axonal conduction velocity, and in synaptic terminals on motoneurons. The corticospinal tract has a key role in producing this plasticity. Behavioral changes produced by practice or injury reflect the combination of plasticity at multiple spinal cord and supraspinal sites. Plasticity at multiple sites is both necessary-to insure continued performance of previously acquired behaviors-and inevitable-due to the ubiquity of the capacity for activity-dependent plasticity in the central nervous system. Appropriate induction and guidance of activity-dependent plasticity in the spinal cord is an essential component of new therapeutic approaches aimed at maximizing function after spinal cord injury or restoring function to a newly regenerated spinal cord. Because plasticity in the spinal cord contributes to skill acquisition and because the spinal cord is relatively simple and accessible, this plasticity is a logical and practical starting point for studying the acquisition and maintenance of skilled behaviors. This article was published in Annu Rev Neurosci and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version