alexa Adaptive interactions between zinc oxide nanoparticles and Chlorella sp.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Chen P, Powell BA, Mortimer M, Ke PC

Abstract Share this page

Abstract The effects of ZnO nanoparticles (NPs) interacting with single-celled green algae, Chlorella sp., have been found to be bilateral. Specifically, our electron microscopy, plant cell, and fluorescence assays showed that the adsorption and aggregation of ZnO NPs compromised algal cell morphology, viability, and membrane integrity, resulting from zinc ion dissolution as well as possible mechanical cell damage induced by the NPs. Conversely, algal cells displayed a remarkable capability of self-protection by minimizing their surface area through aggregation mediated by the oppositely charged metal ions and suppressing zinc ion release from the NPs through exudation, as evidenced by inductively coupled plasma mass spectrometry, zeta potential, and attenuated total reflectance-Fourier transform infrared spectroscopy. This study illustrates the adaptive nature and complexity in potential ecological response to discharged nanomaterials. This article was published in Environ Sci Technol and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version