alexa Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes.
Haematology

Haematology

Journal of Bone Research

Author(s): Banas A

Abstract Share this page

Recent observations indicate that several stem cells can differentiate into hepatocytes; thus, cell-based therapy is a potential alternative to liver transplantation. The goal of the present study was to examine the in vitro hepatic differentiation potential of adipose tissue-derived mesenchymal stem cells (AT-MSCs). We used AT-MSCs from different age patients and found that, after incubation with specific growth factors (hepatocyte growth factor [HGF], fibroblast growth factor [FGF1], FGF4) the CD105(+) fraction of AT-MSCs exhibited high hepatic differentiation ability in an adherent monoculture condition. CD105(+) AT-MSC-derived hepatocyte-like cells revealed several liver-specific markers and functions, such as albumin production, low-density lipoprotein uptake, and ammonia detoxification. More importantly, CD105(+) AT-MSC-derived hepatocyte-like cells, after transplantation into mice incorporated into the parenchyma of the liver. CONCLUSION: Adipose tissue is a source of multipotent stem cells that can be easily isolated, selected, and induced into mature, transplantable hepatocytes. The fact that they are easy to procure ex vivo in large numbers makes them an attractive tool for clinical studies in the context of establishing an alternative therapy for liver dysfunction.

This article was published in Hepatology. and referenced in Journal of Bone Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version