alexa Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4 Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies.
Environmental Sciences

Environmental Sciences

Advances in Recycling & Waste Management

Author(s): Shan RR, Yan LG, Yang K, Hao YF, Du B

Abstract Share this page

Abstract Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO3 emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO3 precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe3O4/Mg-Al-CO3-LDH can be quickly and easily separated using a magnet before and after the adsorption process. Copyright © 2015 Elsevier B.V. All rights reserved. This article was published in J Hazard Mater and referenced in Advances in Recycling & Waste Management

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version