alexa Adsorption of polar and nonpolar organic chemicals to carbon nanotubes.


Journal of Environmental Analytical Chemistry

Author(s): Chen W, Duan L, Zhu D

Abstract Share this page

Abstract Understanding adsorptive interactions between organic contaminants and carbon nanotubes is critical to both the environmental application of carbon nanotubes as special adsorbents and the assessment of the potential impact of carbon nanotubes on the fate and transport of organic contaminants in the environment. The adsorption of organic compounds with varied physical-chemical properties (hydrophobicity, polarity, electron polarizability, and size) to one single-walled carbon nanotube (SWNT) and two multiwalled carbon nanotubes (MWNTs) was evaluated. For a given carbon nanotube, the adsorption affinity correlated poorly with hydrophobicity but increased in the order of nonpolar aliphatic < nonpolar aromatics < nitroaromatics, and within the group of nitroaromatics, the adsorption affinity increased with the number of nitrofunctional groups. We propose that the strong adsorptive interaction between carbon nanotubes and nitroaromatics was due to the pi-pi electron-donor-acceptor (EDA) interaction between nitroaromatic molecules (electron acceptors) and the highly polarizable graphene sheets (electron donors) of carbon nanotubes. Additionally, we attribute the stronger adsorption of nonpolar aromatics compared to that of nonpolar aliphatics to the pi-electron coupling between the flat surfaces of both aromatic molecules and carbon nanotubes. For tetrachlorobenzene, the bulkiest adsorbate, adsorption affinity (on a unit surface area basis) to the SWNT was much stronger than to the two MWNTs, indicating a probable molecular sieving effect.
This article was published in Environ Sci Technol and referenced in Journal of Environmental Analytical Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version