alexa Adsorption of simple aromatic compounds on activated carbons.


Journal of Environmental & Analytical Toxicology

Author(s): Villacaas F, Pereira MF, Orfo JJ, Figueiredo JL

Abstract Share this page

Abstract The adsorption of model aromatic compounds (phenol, aniline, nitrobenzene) on modified activated carbons has been investigated. Electrostatic and dispersive adsorbate/adsorbent interactions are involved in this process. Their influence on the uptake of the above mentioned aromatic compounds has been evaluated using different solution pH conditions and activated carbon samples with different surface chemistries. These samples were obtained by modification of a commercial activated carbon by means of chemical treatment with HNO3 (acid sample) and thermal treatment under a flow of H2 (basic sample). The textural properties were not significantly changed after these modifications. The best uptake for all the adsorptives under most of the pH conditions used corresponded to the basic sample, which means that dispersive interactions are the most important in this process. However, electrostatic interactions cannot be neglected, as can be seen from the uptakes for the same sample at different pH. In the case of aniline at pH 2, electrostatic interactions are predominant, and the best uptake corresponds to the acid sample. The influence of textural properties on the adsorption process was also investigated, by comparing with another commercial activated carbon. As expected, for this type of organic compounds the uptake increases with the micropore surface area. This article was published in J Colloid Interface Sci and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version