alexa Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): MuozElias G, Marcus AJ, Coyne TM, Woodbury D, Black IB

Abstract Share this page

Abstract We recently differentiated adult rat and human bone marrow stromal cells (MSCs) into presumptive neurons in cell culture. To determine whether the MSCs assume neuronal functions in vivo, we now characterize for the first time engraftment, migration, phenotypic expression, and long-term survival after infusion into embryonic day 15.5 (E15.5) rat ventricles in utero. By E17.5, donor cells formed discrete spheres in periventricular germinal zones, suggesting preferential sites of engraftment. The cells expressed progenitor vimentin and nestin but not mature neuronal markers. By E19.5, a subset assumed elongated migratory morphologies apposed to radial nestin-positive fibers running through the cortical white matter and plate, suggesting migration along radial glial processes. Cells remaining in germinal zones extended long, vimentin-positive fibers into the parenchyma, suggesting that the MSCs generated both migratory neurons and guiding radial glia. Consistent with this suggestion, >50\% of cultured mouse MSCs expressed the neuroprecursor/radial glial protein RC2. From E19.5 to postnatal day 3, MSCs populated distant areas, including the neocortices, hippocampi, rostral migratory stream, and olfactory bulbs. Whereas donor cells confined to the subventricular zone continued to express nestin, cells in the neocortex and midbrain expressed mature neuronal markers. The donor cells survived for at least 2 months postnatally, the longest time examined. Confocal analysis revealed survival of thousands of cells per cubic millimeter in the frontal cortex and olfactory bulb at 1 month. In the cortex and bulb, 98.6 and 77.3\% were NeuN (neuronal-specific nuclear protein) positive, respectively. Our observations suggest that transplanted adult MSCs differentiate in a regionally and temporally specific manner. This article was published in J Neurosci and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords