alexa Advances in sequencing technology.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Phylogenetics & Evolutionary Biology

Author(s): Chan EY, Chan EY

Abstract Share this page

Abstract Faster sequencing methods will undoubtedly lead to faster single nucleotide polymorphism (SNP) discovery. The Sanger method has served as the cornerstone for genome sequence production since 1977, close to almost 30 years of tremendous utility [Sanger, F., Nicklen, S., Coulson, A.R, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A. 74 (1977) 5463-5467]. With the completion of the human genome sequence [Venter, J.C. et al., The sequence of the human genome, Science 291 (2001) 1304-1351; Lander, E.S. et al., Initial sequencing and analysis of the human genome, Nature 409 (2001) 860-921], there is now a focus on developing new sequencing methodologies that will enable "personal genomics", or the routine study of our individual genomes. Technologies that will lead us to this lofty goal are those that can provide improvements in three areas: read length, throughput, and cost. As progress is made in this field, large sections of genomes and then whole genomes of individuals will become increasingly more facile to sequence. SNP discovery efforts will be enhanced lock-step with these improvements. Here, the breadth of new sequencing approaches will be summarized including their status and prospects for enabling personal genomics. This article was published in Mutat Res and referenced in Journal of Phylogenetics & Evolutionary Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version