alexa Age and gender differences in youth physical activity: does physical maturity matter?


Journal of Antivirals & Antiretrovirals

Author(s): Sherar LB, Esliger DW, BaxterJones AD, Tremblay MS

Abstract Share this page

Abstract PURPOSE: To investigate whether observed gender differences in objectively measured physical activity (PA) in children (8-13 yr) are confounded by physical maturity differences. METHODS: Four hundred and one children (194 boys and 207 girls) volunteered for this study. An Actigraph accelerometer was used to obtain seven consecutive days of minute-by-minute PA data for each participant. Minutes of moderate to vigorous PA per day (MVPA), continuous minutes of MVPA per day (CMVPA), and minutes of vigorous PA per day (VPA) were derived from the accelerometer data. Age at peak height velocity (APHV), an indicator of somatic maturity, was predicted in all individuals. Gender differences in the PA variables were analyzed using a two-way (gender x age) ANOVA. RESULTS: Levels of PA decreased with increasing chronological age in both genders (P < 0.05). When aligned on chronological age, boys had a higher MVPA at 10-13 yr, a higher CMVPA at 9-12 yr, and a higher VPA at 9-13 yr (P < 0.05). When aligned on biological age, PA declined with increasing maturity (P < 0.05); however, gender differences between biological age groups disappeared. CONCLUSION: The observed age-related decline in adolescent boys and girls PA is antithetical to public health goals; as such, it is an important area of research. To fully understand gender disparities in PA, consideration must be given to the confounding effects of physical maturity. This article was published in Med Sci Sports Exerc and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

  • Limin Chen
    An 18- Gene Signature Predicting Treatment Response to Interferon in Patients Chronically Infected with Hepatitis C Virus
    PPT Version | PDF Version
  • Sudha Srivastava
    Novel Inhibitor by Modifying Oseltamivir Based on Neuraminidase Structure for Treating Drug-Resistant H5N1 Virus Using Molecular Docking NMR and DSC Methods
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version