alexa Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1.
Infectious Diseases

Infectious Diseases

Journal of AIDS & Clinical Research

Author(s): Mi Q, Rivire B, Clermont G, Steed DL, Vodovotz Y, Mi Q, Rivire B, Clermont G, Steed DL, Vodovotz Y

Abstract Share this page

Abstract Inflammation and wound healing are inextricably linked and complex processes, and are deranged in the setting of chronic, nonhealing diabetic foot ulcers (DFU). An ideal therapy for DFU should both suppress excessive inflammation while enhancing healing. We reasoned that biological simulation would clarify mechanisms and help refine therapeutic approaches to DFU. We developed an agent-based model (ABM) capable of reproducing qualitatively much of the literature data on skin wound healing, including changes in relevant cell populations (macrophages, neutrophils, fibroblasts) and their key effector cytokines (tumor necrosis factor-alpha [TNF], interleukin [IL]-1beta, IL-10, and transforming growth factor [TGF]-beta1). In this simulation, a normal healing response results in tissue damage that first increases (due to wound-induced inflammation) and then decreases as the collagen levels increase. Studies by others suggest that diabetes and DFU are characterized by elevated TNF and reduced TGF-beta1, although which of these changes is a cause and which one is an effect is unclear. Accordingly, we simulated the genesis of DFU in two ways, either by (1) increasing the rate of TNF production fourfold or (2) by decreasing the rate of TGF-beta1 production 67\% based on prior literature. Both manipulations resulted in increased inflammation (elevated neutrophils, TNF, and tissue damage) and delayed healing (reduced TGF-beta1 and collagen). Our ABM reproduced the therapeutic effect of platelet-derived growth factor/platelet releasate treatment as well as DFU debridement. We next simulated the expected effect of administering (1) a neutralizing anti-TNF antibody, (2) an agent that would increase the activation of endogenous latent TGF-beta1, or (3) latent TGF-beta1 (which has a longer half-life than active TGF-beta1), and found that these therapies would have similar effects regardless of the initial assumption of the derangement that underlies DFU (elevated TNF vs. reduced TGF-beta1). In silico methods may elucidate mechanisms of and suggest therapies for aberrant skin healing. This article was published in Wound Repair Regen and referenced in Journal of AIDS & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version