alexa Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Mok SS, Masuda K, Huselmann HJ, Aydelotte MB, Thonar EJ

Abstract Share this page

Abstract Proteoglycans synthesized by chondrocytes in alginate beads are found in two compartments: the cell-associated matrix and the further removed matrix (Häuselmann, H. J., Aydelotte M. B., Schumacher B. L., Kuettner K. E., Gitelis, S. H., and Thonar, E. J.-M. A. (1992) Matrix 12, 116-129). To study the metabolism of aggrecan in these two compartments, mature bovine articular chondrocytes in alginate beads were pulsed with [35S]sulfate for 30 min or 16 h on day 7 of culture and then chased in isotope-free medium for up to 21 days. At different times, the two matrix pools were separately isolated, and the 35S-proteoglycans quantified, purified, and characterized. Radiolabeled aggrecan molecules exhibited a very long average half-life in the beads (t1/2 = 95 days). In contrast, small non-aggregating proteoglycans, which made up approximately 4\% of the 35S-proteoglycans synthesized, were rapidly lost from the beads (t1/2 = < 24 h). Approximately half the 35S-aggrecan subunits, representing mostly molecules which showed a delay in ability to form aggregates in the presence of exogenous hyaluronan and link protein, spent only a short time (t1/2 = 4 h) in the cell-associated matrix before moving into the further removed matrix. They exhibited a much longer average half-life in the beads than 35S-aggrecan molecules which became resident of the cell-associated matrix (t1/2 = > 95 days versus 15 days). Radiolabeled aggrecan subunits in the two matrix compartments had a similar average hydrodynamic size and polydispersity; importantly, the size of these molecules did not change during the chase period. Catabolism of 35S-aggrecan in the cell-associated matrix was the only significant contributor to the appearance in the medium of partially degraded 35S-aggrecan which had lost the ability to bind to hyaluronan. These results strongly suggest aggrecan molecules which reside in the pericellular and territorial matrix compartments in close proximity to the chondrocytes have a much faster rate of turnover than their counterpart in the interterritorial areas further removed from the cells.
This article was published in J Biol Chem and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan
  • Advances in Skin, Wound Care and Tissue Science
    November 9-10, 2017 Frankfurt, Germany
  • 12th Edition of International Conference on Tissue Engineering and Regenerative Medicine
    May 10-11, 2018,Frankfurt, Germany
  • 4th International Conference on Synthetic Biology and Tissue Engineering
    June 11-12, 2018 Rome, Italy
  • 9th International Conference on Tissue Science and Regenerative Medicine
    July 19-20, 2018 Melbourne, Australia
  • 4th International Conference on Wound Care, Tissue Repair & Regenerative Medicine
    October 5-6, 2018 Los Angeles, USA
  • 9th International Conference on Tissue Engineering and Regenerative Medicine
    November 9-10 , 2018 Atlanta, Georgia ,USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]ne.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords