alexa Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Developing Drugs

Author(s): Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ,

Abstract Share this page

Abstract In this work we present an analysis of the thermal behavior of hydroxypropylmethyl cellulose aqueous solutions, from room temperature to higher temperatures, above gelation. We focus on significant aspects, essentially overlooked in previous work, such as the correlation between polymer hydrophobicity and rheological behavior, and the shear effect on thermal gelation. Micropolarity and aggregation of the polymer chains were monitored by both UV/vis and fluorescence spectroscopic techniques, along with polarized light microscopy. Gel formation upon heating was investigated using rheological experiments, with both large strain (rotational) tests at different shear rates and small strain (oscillatory) tests. The present observations allow us to compose a picture of the evolution of the system upon heating: firstly, polymer reptation increases due to thermal motion, which leads to a weaker network. Secondly, above 55 degrees C, the polymer chains become more hydrophobic and polymer clusters start to form. Finally, the number of physical crosslinks between polymer clusters and the respective lifetimes increase and a three-dimensional network is formed. This network is drastically affected if higher shear rates, at non-Newtonian regimes, are applied to the system. This article was published in J Colloid Interface Sci and referenced in Journal of Developing Drugs

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords