alexa Air pollution particulate SRM 1648 causes oxidative stress in RAW 264.7 macrophages leading to production of prostaglandin E2, a potential Th2 mediator.


Journal of Experimental Food Chemistry

Author(s): Schneider JC, Card GL, Pfau JC, Holian A

Abstract Share this page

Abstract Particulates in air pollution have been strongly associated with asthma symptoms. These particulates are a conglomeration of many components, including metals, polyaromatic hydrocarbons, and lipopolysaccharide, that may cause oxidative stress upon uptake by alveolar macrophages. The objective of this study was to assess whether uptake of a model air particulate (SRM 1648) causes oxidative stress in macrophages resulting in the production of the eicosanoid mediator prostaglandin E(2) (PGE(2)) that might exacerbate asthma. SRM 1648 suspended in phosphate-buffered saline (PBS) was introduced into wells with plated RAW 264.7 monocyte/macrophages. Following incubation of SRM 1648 with RAW 264.7 macrophages, prostaglandin E(2) was measured by enzyme immunosorbent assay (EIA), and oxidative stress was assessed by the levels of intracellular reduced glutathione (GSH) as well as by the oxidation of dihydrodichlorofluorescein (H(2)DCFDA) to the fluorescent dichlorofluoresecein (DCF). The results indicated that SRM 1648 caused oxidative stress in RAW 264.7 macrophages, as shown by a compensatory increase in GSH levels in comparison to the controls of titanium dioxide and media alone. Prostaglandin E(2) levels significantly increased at the 3-, 6-, and 12-h time points. Introduction of GSH ester to buffer against oxidative stress was able to block the elevation of PGE(2). The data show that SRM 1648 causes oxidative stress in RAW 264.7 macrophages resulting in formation of the potential Th2 mediator prostaglandin E(2). This article was published in Inhal Toxicol and referenced in Journal of Experimental Food Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version